
FEATURE ARTICLE

Molecular Structure and Orientation: Concepts from Femtosecond Dynamics

J. Spencer Baskin and Ahmed H. Zewail*
Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology,
Pasadena California 91125

ReceiVed: December 18, 2000; In Final Form: February 7, 2001

In this article, we are concerned with the basic concepts of molecular orientation, its dynamics on the
femtosecond and picosecond time scales, and the direct relationship of the foregoing to determination of
molecular structures. Our aim is to present a unified picture for the dynamics in different phases: coherent
inertial in isolated molecules, partially coherent in dense fluids, and reaching the diffusive limit in liquids.
We compare theory and experiment for reactive and nonreactive systems, with examples of studies from this
laboratory in molecular beams, dense fluids, liquids, proteins, and micelles. We discuss the high precision
achieved in molecular structural determination for large isolated molecules. Important to molecular orientation
in space is the time scale, and we present here the two limits: quantum-state orientation (long time or continuous
wave experiment) and classical-like orientation achieved with femtosecond resolution.

I. Introduction

The fact that molecules have well-defined structures is a
concept of fundamental importance in chemistry.1 A corollary
to this idea is the fact that profound consequences of spatial
orientationof molecules are ubiquitous in all areas of molecular
science. Chemical and many physical and biological properties
of molecules are inherently orientation-dependent, and therefore
the degree of orientation and the evolution of orientation
significantly affect studies of molecular systems in all physical
phases, from dilute gases to solids. The type of orientational
motion encountered varies from generally negligible in solids,
to diffusive in liquids, to hindered in dense gases, to purely
inertial and coherent in isolated molecules.

Hydrodynamic descriptions of rotational diffusion in liquids
have a long history,2,3 and the time scales of diffusive reorienta-
tion have been amenable to direct studies for many decades.4

The consequences of free (inertial) rotational motion of mol-
ecules began to receive attention in the 1960s.5,6 With the
development of femtosecond laser techniques, experimental
investigations have now spanned the full range of time scales
and environments of molecular orientational motion.7

This article is concerned with some basic concepts of
molecular orientational dynamics, with an emphasis on its role
in femtosecond studies and its relationship to molecular
structures. The femtosecond time scale is unique in that the
orientation of molecular samples, even when undergoing free
rotation, can be followed as it evolves, providing direct
information on the nature of the motion and the forces that
govern it. The topics that will be addressed are the following:
free rotational motion of isolated molecules; orientation in the
presence of collisions and the effect of solvent density in
bridging the gap from inertial to diffusive motion, spanning
gases and liquids; and orientation in reactions. We conclude
with a description of molecular orientation in space and time,
connecting the regimes of short- and long-time or continuous

wave (cw) experiments. Some aspects of the basic experimental
implementation of the measurements are also discussed.

II. Orientation of Free Molecules

When an isotropic sample is excited by a linearly polarized
pump pulse (polarization vectorεb1) via an electric-dipole allowed
vibronic transition, there is created at the instant of excitation
(t ) 0) a spatial alignment or orientational anisotropy of the
excited state population (Figure 1), because the probability for
absorption is dependent upon the relative orientation ofεb1 and
the molecular transition dipole vectorµb1. The excited ensemble
is created with its transition dipoles exhibiting a cosine-squared
distribution aroundεb1 (Figure 1, bottom). Subsequent rotational
motion causes an evolution of that distribution, as represented
schematically by snapshots aftert ) 0 at the top of Figure 1,
and the evolving dipole distribution at the bottom, for the case
of a simple rotor. (Recurrences in the ensemble orientation at
specific times are a quantum phenomenon and will be discussed
later in this section.)

The preceding paragraph adopts a fundamentally classical
viewpoint in describing the phenomenon of molecular orienta-
tion. As this viewpoint provides an almost entirely adequate
basis for understanding and discussing femtosecond experiments,
it will be relied upon heavily in this work. A brief discussion
of the quantum origins of orientational dynamics and the
differences to be expected between experiments using femto-
second pulses and those using nanosecond or longer pulses (cw
excitation) will be given in section VI.

To investigate the nature of molecular orientation, we
typically proceed experimentally by the measurement of the
macroscopic transient polarization anisotropy,r(t). Following
the excitation process, the sample is interrogated by interaction
with a time-delayed linearly polarized probe pulse using any
of a variety of detection schemes chosen to produce a signal
proportional to the total population that undergoes the probe
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transition. The experimental quantity is

where S|(t) and S⊥(t) are the transient pump-probe signal
intensities measured for probe polarization vector parallel and
perpendicular, respectively, to that of the pump. This quantity
is equal to the time correlation function of the transition dipole
unit vectors (see, e.g., ref 8):

where µb2 is the probe-transition dipole vector;µ̂i ) µbi/|µbi|;
P2(x) ) 0.5(3x2 - 1) is the second-order Legendre polynomial;
and the angle brackets denote a weighted average over the
rotational state distribution of molecules in the sample.

The real-time observation of the femtosecond to picosecond
evolution of the anisotropy of molecular samples has been
exploited for almost two decades in the study of isolated
molecules. A principal motivation for such studies is the

valuable information about molecular structures that derives
from the observation of coherent orientational motion of
molecules, resulting in rotational recurrences directly seen in
r(t). (For reviews, see refs 7 and 9.) The decay of the anisotropy
at short times has also been observed in isolated molecules (see,
e.g., refs 10-13), and this behavior serves as a fundamental
probe of inertial motion at finite temperature in a manner
analogous to the role it has long played in studies ofdiffusiVe
reorientation in liquids. Both classical and quantum mechanical
theoretical treatments based on free rigid rotor motion (see, e.g.,
refs 6 and 14) have been very successful at describing the decay,
and the recurrences.14,15

Here we summarize some essential characteristics of molec-
ular orientation dynamics for symmetric top molecules undergo-
ing classical free rotation. The motion of a rigid symmetric rotor
is describable16 as a combination of two independent motions
(Figure 2, inset): nutation of the top’s symmetry or figure axis
about the angular momentum vectorjBat angular frequencyωn,
and rotation about the figure axis at angular frequencyωr. Using
the standard definition of rotational constant in frequency units,

Figure 1. (Top) General concept of time-resolved orientation experiments on isolated molecules. An isotropic distribution of dipoles is excited at
t ) 0 by a vertically polarized light pulse. The thicker lines represent dipoles in their excited states, which follow individual rotational trajectories.
(Bottom) Spatial distributions of transition dipole orientations for the excited state population at selected times are shown. The distributions are
axially symmetric about the pump polarization vectorεb1.

r(t) ) (S|(t) - S⊥(t))/(S|(t) + 2S⊥(t)) (1)

r(t) ) 0.4〈P2[µ̂1(0)‚µ̂2(t)]〉 (2)
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Bi ) p/(4πIi), whereIi is the moment of inertia about theith
principal inertial axis, the angular frequencies are given clas-
sically16 by ωn ) 4πB⊥j ) ωnoj, andωr ) 4π(B| - B⊥)j cosθ
) ωrok. Here,B| andB⊥ are the excited-state rotational constants
of the molecule about its figure axis and about any axis
perpendicular to it, respectively,ωno ) 4πB⊥, ωro ) 4π(B| -
B⊥), and k ) j cos θ. Introduction of the quantityp in the
definition of B requires that the valuesj andk that appear in
the classical frequency expressions given above be the magni-
tudes divided byp of, respectively, the classical total angular
momentumjBand of its axial componentkB; i.e., j ) |jB|/p andk
) |kB|/p. Thus, ωno and ωro, referred to as the fundamental
angular frequencies of nutation and rotation, correspond to|jB|
) p and |kB| ) p, respectively.

A broadly applicable prescription for calculation ofr(t) for
this idealized case, which, nonetheless, provides a useful
approximation to the motion of many real molecules, is given
in the Appendix in terms of the Euler anglesθ, æ, andψ relating
the principal inertial axes (x, y, z) of the molecule to space fixed
axes (see Figure 12). It is found that the state-resolved anisotropy
may be a function not only of time but also ofj (through the
frequencies),θ (both explicitly and throughωr), and ψ0, the
initial rotational phase angle, which has no influence on
rotational energy. We consider here two simple but common
cases: µ̂1 and µ̂2 both either parallel or perpendicular to the

figure axis of the molecule. The relation of the two transition
moments to the figure axis is designated by the notations (|,|)
and (⊥,⊥), respectively. In the first case, application of eq A-4
with µ̂1 ) ẑ(0) andµ̂2 ) ẑ(t) yields

Because rotation about the figure axis is not reflected in the
motion of a parallel dipole,r|,| does not depend on the rotation
frequencyωr, nor was integration overψ0 (eq A-3) required.

Equation 3 is seen to be periodic in time with a period of
2π/ωn ) 1/(2B⊥j), independent ofθ. A rigorous treatment shows
that the quantum mechanically correct behavior requires the term
periodic in frequencyωn ) jωno be replaced by an average of
terms in jωno and (j + 1)ωno and that the frequency 2ωn be
replaced by (2j + 1)ωno. The largest common factor of these
three frequencies is simplyωno, sor|,|(j,θ,t) is, in general, strictly
periodic only at the fundamental rotational period, 1/(2B⊥),
regardless of the value ofj. The initial anisotropy is equal to
0.4, as is always the case when the pump and probe dipoles
have the same orientation in the molecule-fixed frame. Figure
2 shows a calculation using eq 3 (with corrected frequencies)
for j ) 6 andk ) 3 when 2π/ωno ) 1948 ps. (The rotational
constants used are approximately those ofS1 trans-stilbene.)17

A situation of particular interest and simplicity is that ofj
perpendicular to the figure axis, which holds to good ap-
proximation for all linear molecules. Withθ ) π/2 and (2j +
1)ωno replacing 2jωno, eq 3 reduces to

which oscillates at (2j + 1) times the fundamental angular
frequency and has a mean value of 0.1. (In this case, nutation
and rotation are interchangeable terms, since there is no rotation
about the figure axis.)

For the (⊥,⊥) dipole case, taking, for example,µ̂1 ) x̂(0)
and µ̂2 ) x̂(t), one obtains from eq A-4

where the quantum frequency corrections are omitted for
simplicity. Both nutation and rotation about the figure axis
influence this expression. Rotation enters only in the form of
the overtone 2ωr because positions of a perpendicular dipole
that are separated by aπ radian rotation are optically equivalent.
The dependence ofr⊥,⊥(j,θ,t) on two independent fundamental
frequencies means that this anisotropy generally displays no
strict periodicity as doesr|,|(j,θ,t).

Given an expression forr(j,θ,t) for each rotational energy
level, the macroscopic (and hence experimentally observable)
anisotropy will depend on the weight accorded to each in the
ensemble average of eq 2. As an example of the simplest case,
the observation of a single-energy-level anisotropy has been
demonstrated for Li2 by first using a narrow bandwidth cw laser
to populate a selected excited rovibronic level (well above

Figure 2. (Top) Theoretical anisotropy for a single energy level of a
symmetric top withB| ) 2.603 GHz andB⊥ ) 0.2566 GHz and (|,|)
transition dipoles. Inset: Classical motion of a rigid symmetric top
molecule.jBis the total angular momentum vector andkB is its projection
along the figure axis.ωn andωr are the angular frequencies of nutation
about jB and rotation about the figure axis, respectively. (Middle)
Theoretical anisotropy for a thermal sample of the same molecule atT
) 296 K. (Bottom) Expanded view of the early time anisotropy decays
of the same molecule, again atT ) 296 K, but now for various dipole
directions as indicated.

r|,|(j,θ,t) ) 1/10(3 cos2 θ - 1)2 +
6/5 sin2 θ cos2 θ cos(jωnot) +

3/10 sin4 θ cos(2jωnot) (3)

r|,|(j,π/2,t) ) 0.1+ 0.3 cos[((2j + 1)ωnot)] (4)

r⊥,⊥(j,θ,t) ) 1/40(3 cos2 θ - 1)2 +
3/10 cos2 θ sin2 θ cos(jωnot) + 3/40 sin4 θ cos(2jωnot) +

9/80 sin4 θ cos(2kωrot) + 3/40(1 + cosθ)2 sin2 θ cos((jωno +

2kωro)t) + 3/40(1 - cosθ)2 sin2 θ cos((jωno - 2kωro)t) +
3/160(1 + cosθ)4 cos(2(jωno + kωro)t) + 3/160(1 - cosθ)4 ×

cos(2(jωno - kωro)t) (5)
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thermal energies), then performing a femtosecond pump-probe
experiment on that population.18 The result is a purely cosinu-
soidally modulated signal represented to first order (neglecting
centrifugal distortion) by eq 4. The measured period and
knowledge of the value ofj allows the structural constantB⊥ to
be determined.

More generally, a thermal population is probed, and then a
large number of different single-energy-level signals modulated
by different frequencies are observed together (incoherently).
An example of an anisotropy from such a thermal distribution
is shown in the middle of Figure 2 for the same molecule as
used for the energy-resolved calculation at the top of the figure.
At early time, the superposition of numerous cosinusoidal signals
leads to a dephasing of the initial alignment, resulting in a decay
of the anisotropy. The dephasing rate depends on the rotational
constants, the dipole direction, and the rotational temperature.
At the bottom of Figure 2 are shown examples of the initial
anisotropy decay as calculated for a room-temperature rotational
population distribution, again with rotational constants ap-
proximating those ofS1 trans-stilbene.

Precise expressions can be derived8,19 for the characteristic
dephasing time of an ensemble of linear molecules in the (|,|)
dipole case (eq 4); the coherence time,τ′c, defined as the time
for the anisotropy to fall to 0.1, is given by

whereT is the temperature in degrees Kelvin andB⊥ is expressed
in cm-1. This expression is found to hold to high accuracy for
the (|,|) dipole case of prolate nonlinear symmetric tops also
(eq 3), an example being the case shown in Figure 2. Note that
eq 6 is derived by assuming that the bandwidths of the pump
and probe pulses span with equal spectral densities all allowed
transitions from all populated rotational levels of the relevant
initial vibronic state. When this is not the case, the time
dependence will be a function also of the overlap of the pulse
spectra with the rotational contour of the transition.

Observation of the dephasing described above and shown in
Figure 2 requires only that the collision time in a thermal sample
of molecules is long compared to the rotation time (typically a
few picoseconds). When the collision interval is much longer,
as in molecular beam studies, the possibility exists for complete
or partial rephasing, or recurrence, of the macroscopic align-
ment. Rephasing will occur when the nutation and rotation
periods of a significant fraction of the molecules are com-
mensurable (i.e., have a common multiple), or nearly so. Such
is clearly the case for rigid symmetric tops, for which the
nutation and rotation frequencies are integral (based on the
quantization ofj andj cosθ ≡ k) multiples of the fundamental
frequencies,ωno and ωro. In the (|,|) dipole case, complete
rephasing occurs at timesm(2π/ωno) for integerm, with a partial
negative recurrence at times (m + 1/2)(2π/ωno) (see Figure 2,
middle).

In the (⊥,⊥) dipole case, there are terms periodic in the
angular frequenciesω1 ) ωno and ω2 ) 2ωro contributed by
molecules of all energy levels (see eq 5). In addition, from those
levels withk ∼ j there are terms quasiperiodic inω3 ) ωno +
2ωro and ω4 ) 2(ωno + ωro) (including consideration of the
above-specified quantum corrections toωn and 2ωn). Note that,
since cosθ ) k/j, the apparent contributions of thek ∼ j levels
at the difference frequencies,ωno - 2ωro and 2(ωno - ωro),
have negligible amplitude. Thus, partial recurrences appear in
r⊥,⊥(t) at timesm‚T, wherem is an integer andT ) 2π /ωi, for
i ) 1-4. These times are directly related to the structural

parametersB⊥ and B|, and recurrence measurement therefore
provides information about the molecule’s structure.

The nature of rotational coherence recurrences and their
dependence on molecular structure and dipole directions have
been described in detail elsewhere,17,20 and fully quantum
mechanical calculations can be shown to give virtually identical
results to those obtained by use of the expressions presented
here. Experimental application has also been extensive and has
proven rotational coherence spectroscopy to be a powerful,
Doppler-free, technique for the determination of molecular
structure, and notably, that it is broadly applicable to real
molecules, not just the rigid symmetric tops considered here;
more than one hundred structures have been studied by rotational
coherence spectroscopy (RCS) in laboratories around the world.
As an example, a fluorescence anisotropy measurement of jet-
cooled trans-stilbene is shown in Figure 3, plotted with a
quantum-theoretical asymmetric-top simulation with appropri-
ately chosen rotational constants. The molecular structure
deduced with the aid of such measurements17 is also shown.

III. Inertial to Diffusive Motion: Effect of Solvent
Density

With an increase in the frequency ofjB-changing collisions
suffered by the molecules under study, the coherent and inertial
rotational motion described in the preceding section survives
for shorter and shorter times. At the molecular level, the situation
for rotational dynamics is represented schematically in Figure
4, where the rotation of a diatomic solute molecule in a bath of
solvent particles is controlled by the rate of collisions and by
the effectiveness of those collisions in transferring angular
momentum to or from the solute.13 At gas-phase densities,
changes in the recurrences can be monitored for obtaining

τ′c ) 2.942(TB⊥)-1/2 ps (6)

Figure 3. Comparison of experimental and theoretical anisotropies of
jet-cooled samples oftrans-stilbene (from ref 15) and the structure
deduced from rotational coherence measurements.17

Feature Article J. Phys. Chem. A, Vol. 105, No. 15, 20013683



information about the collision dynamics.21 At even moderate
densities (a few atoms/nm3), collisions in molecular fluids occur
at subpicosecond intervals.

With femtosecond time resolution, the rotational evolution
of the solute can be precisely observed, and its dependence on
solvent properties and densities can be characterized.13 Such
measurements probe directly the nature of microscopic friction,
the interaction of solvent and solute at the molecular level, which
plays a fundamental role in the dynamic evolution of solution
phase chemical and physical processes.

Theoretical models of the role of friction in controlling
molecular rotation have a long history (see, e.g., refs 2-6 and
22). The reorientational motion of a solute molecule in high-
density fluids may be treated as a form of rotational Brownian
motion. Focusing on the motion of a linear rotor with two
rotational degrees of freedom, the total torque acting on the
molecule is separated into the frictional torque,-êIωb, which
is proportional to and opposes the angular velocityωb, and a
random torqueTB. Here, I is the unique moment of inertia of
the rotor andê is the reduced rotational friction coefficient. A
Langevin equation treatment,23 I(∂/∂t)ωb(t) ) -êIωb(t) + TB, leads
to an exponential decay of the angular velocity autocorrelation
function (Ω(t) ) 〈ωb(t)‚ωb(0)〉) with a decay rate ofê, and to the
following analytical expression for transient anisotropy,

whereτ ) 1/ê. This gives the correct inertial limit at early time:

and an exponential decay fort . τ,

using the Langevin-Einstein value for the rotational diffusion
constant,Dr ) kT/(êI) ) kTτ/I, which is the well-known result
for the diffusive limit. This treatment is invalid under conditions
of large angle free (inertial) rotation, however, and therefore is
not useful under low friction conditions.

To apply the above expressions, a value ofê is required.
Hydrodynamic theory allows one to calculateê for an idealized
ellipsoidal solute in a viscous fluid continuum as a function of
the ellipsoid dimensions, shear viscosityη of the solvent, and
the boundary condition assumed at the solute-solvent inter-
face.3,24This treatment is valid in the same limit as the Langevin
treatment; that is, for small solvent/solute mass ratio and
collision time short on the time scale of free rotation, and the
choice of boundary condition appropriate to a particular system
remains a source of uncertainty in the result.

For example, for a prolate ellipsoid of revolution about an
axis perpendicular to the symmetry axis, which is the case
appropriate to the anisotropy of a diatom with transition dipole
parallel to the internuclear axis,ê for sticking boundary
condition is given by3

where the ellipsoid has semimajor axisa and semiminor axis
b, V is the ellipsoid volume (V ) 4/3πab2), andâ ) b/a. The
ratio êslip/êstick may then be found in Table 1 of ref 24 as a
function of b/a.

Defining τrot as the time constant of anisotropy decay in the
rotational diffusion limit (eq 9), one may write

The influence of the shape of the molecule is contained in the
geometrical shape factorf, which can be seen in the stick limit
to be equal to2/3 times theâ-dependent term in eq 10. When
the body is spherical (â ) 1), one finds from eq 10 that
lim

âf1
êstick ) 6ηV/I, corresponding tofstick ) 1. The value ofτrot

in the slip limit follows from the use of eq 11 withfslip )
fstickêslip/êstick.

(A) J- and m-Diffusion Models.6 To overcome the restriction
to small angular steps for the free rotation between collisions,
which clearly limits the preceding theories to relatively high
densities, Gordon developed theJ- and m-diffusion models.6

In these purely collisional models, the interaction of solute and
solvent results solely from discrete, Poisson-distributed events
(“collisions”) with collision intervalτcoll. Between collisions,
free rotation of the rotor pertains, and arbitrarily large angular
excursions under free inertial motion are possible at largeτcoll.

In the Gordon models, the key to obtaining a closed form
solution for the polarization anisotropy is the assumption that
the direction of jB is randomized at each collision. In the
m-diffusion model, the magnitudej remains constant, while in
the more realisticJ-diffusion model the magnitude is also
randomized over a thermal distribution at each collision. The
assumption of angular momentum randomization at each
collision means that the angular velocities before and after a
collision are uncorrelated (〈ωb(τcoll

- )‚ωb(τcoll
+ )〉 ) 0). Thus, the

only contribution to the angular velocity autocorrelation function

Figure 4. (Top) Schematic of the microscopic origin of friction on
the rotational motion of a diatomic solute in atomic solvent. A random
collision interrupts the free rotation of the diatom and causes a change
∆jB in angular momentum (from initialjB to final jB′). (Bottom) The
limiting cases of diffusive and purely coherent rotation are illustrated
conceptually by a plot of cos(Θ(t)), whereΘ(t) is the evolution with
time of the polar angle formed by the diatom internuclear axis with its
direction att ) 0.

r(t) ) 0.4 exp(- 6kT
I

(τ2e-t/τ + τt - τ2)) (7)

r(t) ) 0.4 exp(- 3kT
I

t2) (8)

r(t) ∝ exp(-6Drt) (9)

êstick ) 4ηV
I

1 - â4

(2â2 - â4)

x1 - â2
ln[1/â(1 + x1 - â2)] - â2

(10)

τrot ) êI/6kT ) f ηV/kT (11)
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comes from the population which has suffered no collisions.
According to the Poisson distribution, this population decays
exponentially with time constantτcoll; that is,τ ) τcoll.

The assumptions underlying each of the above treatments
preclude the quantitative prediction of dynamic behavior as a
function of the physical nature of the solvent particles. The
gradual transition of the polarization anisotropy from its
distinctive and nonmonotonic free-rotor form to a diffusion-
controlled exponential decay at long time and nonzero pressure
is approximated in the Gordon models, although not quantita-
tively and without explicit solvent dependence, while Langevin-
hydrodynamic treatments are invalid under conditions of large-
angle free (inertial) rotation and therefore cannot reproduce the
coherence associated therewith. In contrast, the quantitative
features of the measured rotational dynamics are captured for a
broad range of densities by theJ-coherence model, which is
summarized below.

(B) J-Coherence Model.13 To establish the link between the
physical parameters of the solute-solvent system in question,
including the masses, moment of inertia, temperature, and the

intermolecular potential, and the friction, or decay ofΩ(t), the
Gordon assumption of randomization ofjB is replaced by an
approximation of the specific distribution of finaljB, which
is produced by the kinematics of the actual binary collisions.
The general framework of the Gordon models is retained,
but following the nth collision, the distribution ofjBn+1 is
not thermal, but given by the functionP jB(jBn,T,m), which
incorporates a precise classical hard-sphere treatment of the
collision of the rotor with a solvent atom of massm, at solvent
temperatureT. The anisotropy decay of the sample is obtained
by numerically tracking the rotational trajectories of a large
number of molecules through binary collisions with a statistical
selection of solvent atoms. In this way, the relationship between
the true collision interval, as derived from kinetic gas treatments,
andτ, the effective angular momentum scrambling lifetime, is
determined.

In Figure 5, measured anisotropy decays of iodine in argon
are shown withJ-coherence model fits.13 One sees that the
general features of the experimental anisotropies across the full
range of densities are well-reproduced by the theory. The free-

Figure 5. J-coherence fits of experimental polarization anisotropies of iodine in argon at a range of densities. TheJ-coherence collision time, and
the number density and pressure of the solvent are shown for each anisotropy.λpump is 613 nm for the 300 bar data, and 623 nm for the other three.
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rotor anisotropy, characterized by a coherent dip (at which the
average rotor is approximately perpendicular to its initial
direction) followed by a gradual return to the asymptotic value
of 0.1, is approximated by the 1 bar argon measurement in
Figure 5.

At higher pressures, the dip is washed out when collisions
scramble the angular momentum alignment before the initial
dipole alignment is totally lost (first1/4 period of rotation). At
very high pressures, the dipoles undergo a relatively slow
monotonic angular diffusion toward isotropy, reflected by an
exponentially decayingr(t). The data in ref 13 illustrate very
clearly, however, that the transition from low to high pressure
limits has a very different density dependence in the solvent
gases argon and helium. For example, the anisotropy dip has
completely vanished by a density of 7.3 argon atoms/nm3 (300
bar). Above this pressure of argon, it is possible to obtain a
good fit of the anisotropy using the Langevin friction model
and eq 7. In contrast, the anisotropy dip in helium is still very
evident at 20 atoms/nm3 (1300 bar), and the anisotropy does
not fit well to the Langevin friction model even at 26.6 helium
atoms/nm3, indicating partial coherence of rotational motion
survives for delays up to at least 4 ps.

From theJ-coherence calculations, both the anisotropy and
Ω(t) were obtained.Ω(t) was single exponential in form and
its lifetime τ could be compared withτcoll to quantify thejB
scrambling potency per collision of each solvent. It was found
that,τ ) 5.5τcoll for argon andτ ) 43τcoll for helium. That is,
the angular velocity of an average iodine molecule persists
through ∼5.5 collisions with argon and 43 collisions with
helium.

In addition to accurately reproducing the temporal evolution
of the anisotropy at arbitrary density, a primary goal of the
J-coherence model is to be able to predict its dependence on
the properties of the solvent. In Figure 6, the Enskog hard-sphere
collision rate vs density is shown as derived independently of
the experiments. The experimentalJ-coherence collision rates
in argon are only slightly higher than the Enskog rates, showing
good agreement with a scaling of the rates by a factor of 1.5.
For helium, in which collisions with iodine are well-represented

by a hard sphere potential, the rates are in very good agreement
with the Enskog rates without adjustment.13

In summary, theJ-coherence bimolecular collision model
provides a clear prescription for relating the hard-sphere
properties of the solvent and solute to the friction and to the
decay of solute anisotropy over the entire experimental density
range, from free rotational motion to rotational diffusion. In a
recent article,25 Gelin has related theJ-coherence model to the
Keilson-Storer model and presented analytical expressions
yielding results that are in close agreement with those of the
J-coherence analysis.

IV. Orientation in Liquids and Solutions of Confined
Molecules

As seen in the case represented in Figure 5, when the angular
momentum correlation time becomes shorter than the charac-
teristic time scale of free rotation, a diffusive description of
rotational motion is appropriate. This limit generally applies
for molecules in solution, but the form of the anisotropy decay
need not be the simple one of eq 9. For an asymmetric solute
molecule with arbitrary transition moment directions, the general
form of r(t) has up to five exponential components with lifetimes
that are functions of the diffusion constants for rotation about
the three principal axes.4 The required generalization of eq 10
for the sticking friction coefficients for rotation of an arbitrary
ellipsoid about each of its principal axes can be found in ref 3,
and the corresponding slip coefficients are available for a range
of ellipsoid shapes.26

With these theoretical results in hand, the effective local
friction coefficients for a wide variety of solute-solvent systems
have been deduced from measured anisotropy decays. Com-
parison with the limiting hydrodynamic values suggests sig-
nificant variability in the effective boundary condition, ranging
from slip to stick and sometimes beyond. Extensive discussion
of these results and the models advanced to provide a micro-
scopic explanation for the variability in boundary condition can
be found elsewhere.27

In liquids and solutions, the observation of the decay ofr(t)
in real time provides a direct view of the nature of local friction
and the degree of orientational freedom of the solute. The former
is evident in the time scale of the decay ofr(t), while a barrier
to free motion may be reflected by decay of the anisotropy to
a nonzero value, ranging from zero for unrestricted motion to
0.4 for a system in which rotation is completely hindered. A
striking example is given in Figure 7 for a dye molecule
(HPMO) in solution, in a micelle, in cyclodextrin, and in a
protein.28 In p-dioxane solution, the anisotropy decays by simple
isotropic diffusion. In the protein, a constant value of the
anisotropy shows that the dye is effectively immobilized on the
time scale of the experiment, while in cyclodextrin, in particular,
partial orientational relaxation to a long-lived plateau ofr(t) is
clear evidence of restricted motion of the dye within the sugar
cavity. Similar studies have been made in this laboratory to
examine the nature of confined hydrophobic structures in
proteins and their recognition of DNA.

V. Orientation in Reactions

The concept of collision-induced angular momentum scram-
bling of section III is relevant also to the dynamics of reactive
systems, where now the recoil from fragmentation parallels the
effect of impact with a solvent molecule. Thus, polarization
anisotropy measurements are likewise of value in providing a
view of the temporal change in vectorial dynamics in time-
resolved studies of dissociation reactions.29,30 In a previous

Figure 6. Solvent density dependence of the collision rates of iodine
in argon derived from experimental anisotropies by theJ-coherence
andJ-diffusion models. Different symbols correspond to independent
series of experiments. The hard-sphere ideal-gas and Enskog collision
rates are shown for comparison. The Enskog curve is plotted a second
time scaled by a factor of 1.5.
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study,8 we presented a classical treatment of time-dependent
coherent alignment in the products of a unimolecular dissocia-
tion initiated by pulsed laser excitation, based on the simplifying
assumptions of prompt, impulsive dissociation and symmetric
top motion. Despite the high degree of approximation underlying
the calculations, certain features of experimental measurements
were qualitatively reproduced, providing potentially valuable
insight into the dissociation vectorial dynamics.

(A) Evolution of Coherence.Consider systems that dissoci-
ate into atom+ molecule, i.e.,

with M2 ranging from a diatomic to a large polyatomic. Such a
reaction is illustrated at the bottom of Figure 8. Here, the
polarized pump pulse creates a spatial alignment of thereactant
(M1*) population from an initially isotropic M1 population, and
the time evolution of alignment of the dipole moment,µ̂2, of
theproductmolecules determines the time-dependent polariza-
tion anisotropy of the signal. The translational motion of the
fragments in the M1* center of mass frame is characterized by
separation of the centers of mass of M2 and A with equal and
opposite linear momenta, along trajectories that are displaced
from each other by the impact parameterb. The energy
differenceE′ between the internal energy of M1* and that of
the products appears as kinetic energy of rotation and translation.

To calculate the time dependence of the probe signal as a
function of probe polarization for the reaction described by eq
12, the rotational motion of each probe dipole must be traced
continuously fromt ) 0, the moment when the alignment of
the reactant population M1* is created by the excitation pulse.
In a “prompt, impulsive dissociation” approximation, the motion
of M1* prior to dissociation and the duration of the “transition
state" between reactant and free product are both taken to be of
negligible duration when compared with the rotational periods
entering significantly into the calculation. In this case, only the
initial molecular structure, the direction of the impulse in the
molecular frame, and the available energyE′ need be specified.
Although it is assumed here that the fragment M2 evolves as a
free molecule fromt ) 0, this problem differs in general from
that posed by the direct excitation of M2 in an isotropic sample,
since dissociation may lead to a quite different rotational state
distribution.

As initial conditions for the dissociation experiment, i.e., prior
to the pump laser pulse, we assume that a rotational state

Figure 7. Femtosecond-resolved fluorescence anisotropy evolution of the dye molecule HPMO in four typical environments at 470 nm emission.
The corresponding polarization-analyzed transients for two of the environments are shown at the right.

Figure 8. Orientation in reactions. (Top) Approximate molecular
structure of thetrans-stilbene-He1 van der Waals complex. (Middle)
Time-resolved anisotropies pumping two different absorption bands of
trans-stilbene (S) and thetrans-stilbene-He1 complex (S‚‚‚He). Excita-
tion energies relative to the respective (complex or parent molecule)
electronic origins are given.Bh is 1/2(B′ + C′) of the complex or parent
stilbene (see ref 29). (Bottom) Geometry of the dissociation problem,
M1 f M1* f M2 + A. Left: Before excitation by the pump pulse of
transition dipoleµ̂1 of M1. Right: After dissociation, the dipoleµ̂2 of
fragment M2 is probed.

M1 f M1* f M2 + A (12)
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population distributionPJ({i}) of M1 molecules in a single
vibronic state is accessible to the pump laser, where{i}
represents any complete set of rotational coordinates for M1,
and that the population is spatially isotropic. The orientational
evolution that is pertinent to the pump/probe process is
completely expressed in the functionµ̂1({i},0)‚µ̂2({f},t), as in
eq 2, but where now, due to the dissociation process, the initial
and final rotational states generally differ. In the prompt,
impulsive approximation,µ̂1({i},0)‚µ̂2({f},t) does not depend
on {i}, so the state-resolved anisotropy does not either. Only
the ensemble average of eq 2 may depend on{i} through the
influence it exerts onPj(j,θ,ψ0), the distribution of final
rotational state populations.

As an example, consider a case in which both pump and probe
dipoles are parallel to the symmetry axis of M2, as illustrated
at the bottom of Figure 8. The{f}-state-resolvedr(j,θ,ψ0,t) is
clearly equivalent to the (|,|) dipole case given by eq 3, and
thus again does not depend onψ0, which specifies the azimuthal
orientation of jB in the M2-fixed frame. Because the same
anisotropy is displayed by all fragments occupying a common
energy level, theenergy-leVel-resolved anisotropy of the (|,|)
dipole case following prompt, impulsive dissociation is also
identical to that for direct excitation of free stable molecules,
despite the fact that in the latterψ0 is uniformly distributed
over 2π, while the distribution ofψ0 following dissociation will
normally be very nonuniform. Note that the macroscopic
anisotropies in the two cases will in general still be different,
however, reflecting different final energy level population
distributions.

In the general case, the functionPj(j,θ,ψ0) ≡ Pj(jB) can be
related directly to the three physical sources of M2 rotation: (i)
initial rotation of M1, (ii) the torque applied by repulsion
between M2 and A as they dissociate, and (iii) initial vibration
of M1. When a rigidly rotating molecule dissociates impulsively,
the final angular momentum of M2 is composed of two
independent contributions from sources (i) and (ii). The
contribution of the torque,jBt, can be calculated by invoking
conservation of energy and momentum:8

where II is the inertia tensor of M2, t̂ is a unit vector in the
direction of the torque applied to M2, andµ is the reduced mass
of A and M2.

When the initial angular momentum distribution is thermal
(PJ(JB) ) N/(πQ) exp(-E(JB)/kT)) the final angular momentum
distribution, accounting for both initial rotation and torque, can
be expressed as

for matricesF and G defined in ref 8 as functions of the
structural parameters of M1 and initial rotational temperature.
The effect of initial vibration of M1 on jB, and onjBt in particular,
can be major, however, so the distribution of geometries
associated with vibrational motion may not be neglected in
general. A simple model of the role of vibration can be realized
by averaging the rigid body dissociation described by eq 14
over a distribution of positions of A along the appropriate
coordinate.

Equations 14, 13, and A-5, combined with the state-resolved
anisotropy (eqs A-1, A-2, andr µ̂1µ̂2(j,θ,ψ0,t) ) 0.4P2[µ̂1(0)‚
µ̂2(t)]) constitute a general framework for calculation of the
observable, macroscopic anisotropies of dissociation products.

Such calculations may be compared with specific experimental
results to infer a product rotational distribution and interpret
the distribution in terms of the dynamics of dissociation.

(B) Theory vs Experiment.The vibrational predissociation
of the trans-stilbene-He1 van der Waals complex offers one
chance for such a comparison of theory and experiment. The
S1 dissociation dynamics oftrans-stilbene-X (X ) He, Ar, Ne)
complexes at low excess vibrational energies have been studied
in our laboratory by picosecond time-resolved fluorescence
detection.31,32 To investigate the effect of dissociation on the
dynamics of product rotation, stilbene product emission was
polarization-analyzed. The result for 84 cm-1 excitation is shown
in Figure 8 in the form of the experimental polarization
anisotropyR(t). Shown also in the figure, for comparison, are
anisotropies of parent stilbene for two excitation energies and
of S-He excited to itsS1 origin.

In addition to the initial decay and dip of the anisotropy, the
data of Figure 8 display prominent recurrences, though they
are distinctly weaker in the anisotropy of the dissociation product
than in the three other cases. The reduction in amplitude appears
particularly severe for the negative or out-of-phase recurrences.
The recurrence period is seen to match the nutation period of
stilbene rather than that of the initially excited complex, thereby
confirming that the emitter is stilbene.

To compare with theory, calculations were performed for
product stilbene undergoing symmetric top motion following
dissociation. (It can be confirmed that rotation is sufficiently
slow compared to the dissociation lifetime (∼40 ps) and the
duration of interaction after dissociation (∼1 ps) that the prompt
and, particularly, the impulsive assumptions are reasonable in
this case.8) The calculation of prompt, impulsive dissociation
from the equilibrium geometry (shown at the top of Figure 8,
helium coordinates relative to thetrans-stilbene center of mass
of xA ∼ 0, yA ) 3.0 Å, andzA ) 3.15 Å, with the long axis of
stilbene labeledz andxz being the stilbene plane) results in a
reduction of about 30% of the in-phase recurrence, while that
observed in the first in-phase recurrence of the experimental
data was typically about 40%.

In the simulation, the effect results from the fact that each
stilbene product molecule retains almost all of the initial angular
momentum of the complex (JB ∼ 10p), and the impulse adds to
that an angular momentum of|jBt| ∼ 10p. Although the addition
is vectorial and therefore reduces the total angular momentum
of some molecules while increasing that of others, the increases
dominate and the effective rotational temperature of the sample
is raised. Higher temperature has the effect, in conjunction with
convolution with the instrument response, of reducing measured
recurrence amplitudes.15

Although the experimental reduction of the in-phase recur-
rence is similar to that predicted by the model calculation, the
out-of-phase recurrences seem to be more severely damped in
the measured anisotropies. A simple extension of the model to
include a distribution of initial geometries was made to
investigate the role of vibrational averaging and see if this might
account for the above difference. A long axis displacement of
the helium (i.e., an average over a distribution ofzA) has no
great effect on the calculated anisotropy. A stretch of the van
der Waals bond has no effect at all since the impulsive force is
normal to the stilbene plane. However, calculation of the
anisotropy for a perpendicular bend distribution shows that
contributions from off-axis geometries do produce noticeably
smaller out-of-phase recurrences.

Another reaction for which theory and experiment have been
compared is the dissociation of room-temperature ICN following

jBt ) ( 2E′
1/µb2 + (II -1t̂)‚ t̂)1/2

t̂ (13)

Pj( jB) ∝ exp[-(FG( jB - jBt))
2] (14)
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308 nm excitation.8 Femtosecond measurements with polarized
pump and probe pulses revealed an initial anisotropy of the
signal that decayed on a subpicosecond time scale. In this case,
very little parent rotation carries over to the CN ground-state
product, so the hot CN rotational distribution is a consequence
of a large impulsive torque acting in a nonlinear configuration.
A significant aspect of this study was the fact that the laser
bandwidths limited contributions to the average in eq 2 to only
a small subset of all populated states for any one experiment.

A third example of time-dependent alignment in reactions is
the femtosecond dissociation of HgI2 at 308 nm8 via two reaction
channels, one producing ground-state iodine (2P3/2) and the other
spin-orbit excited I* (2P1/2), with product HgI being vibra-
tionally coherent. The measured anisotropy could be simulated
only with very significantjBt contributions (eq 13), which required
not only that dissociation occur predominantly in bent configu-
rations, but also that higher bend angles lead preferentially to
the production of ground-state iodine. Studies of the polariza-
tion-analyzed signals of this reaction proved essential in showing
the vectorial, orientational motion of liberated HgI, and scalar
vibrational (coherent) dynamics of HgI as it separates from the
force field of the I atom. Femtosecond anisotropy measurements
have also been carried out in solution for this reaction, and
vibrational coherence also persists in solution.33,34

These examples suggest the manner in which information
about vectorial reaction dynamics may be obtained from
polarization anisotropy measurements. Such measurements
reflect the rotational distribution of the fragment, from which
may be deduced information about: (i) the nature of the applied
torque, and (ii) the geometry of the initial complex. These two
aspects of the reaction are closely related to each other, and
can be extracted from the measurements by taking into account
the available energy and contribution of parent rotation to the
fragment. The method should be particularly appropriate for
use on large fragments for which theshape of rotational
recurrences reflect the asymptotic rotational distribution, in the
same way that theirseparationidentifies the fragment molecular
structure.

VI. Orientation in Space and Time: the Classical Limit

We give here a specific, concrete illustration of orientational
anisotropy from the quantum mechanical perspective, with
emphasis on the importance of time scale in reaching classical-
like behavior. We consider a linear molecule whose orientational
properties are completely described by rotational wave functions
Ψjm(θ,æ), where θ and æ are polar coordinates for the
orientation of the nuclear axis in the lab frame andm is the
quantum number for the projection of the angular momentum
on the laboratoryZ axis.

We have, forj any positive integer and integralm ranging
from j to -j,35

wherePj
|m|(cosθ) is an associated Legendre function, that may

be explicitly expressed as

with ν ) (j - |m|)/2 if (j - |m|) is even, or (j - |m| - 1)/2
otherwise. The orientational probability density of a molecule
in the (j,m) rotational eigenstate is given by|Ψjm(θ,æ)|2.
Examples of the orientational densities forj ) 3 are shown in
Figure 9. Note that, despite the complicated distributions for
individual m values, the spatial distribution of the sum of the
seven equally populated (in a thermal, field-free sample)m
sublevels is isotropic, exactly as in the classical case. The same
is true for the sum of the 2j + 1 msublevels for anyj, as shown
by application of the spherical harmonic addition theory.

The transition probability for electronic excitation of a
molecule depends on the transition dipole direction in the
molecular frame, the laser polarization, and the initial and final
rotational states.36 As a specific example, we assume a transition
dipole vector parallel to the nuclear axis and laser polarization
parallel to the laboratoryZ axis. In this case, only transitionsj′
) j′′ - 1, m′ ) m′′ (P branch) andj′ ) j′′ + 1, m′ ) m′′ (R
branch) are possible, with amplitude factors proportional to

x(j′′-m′′2)/(4j′′2-1) and x((j′′+1)2-m′′2)/((2j′′+1)(2j′′+3)),
respectively.

An appropriately tuned narrow bandwidth laser will access
a branch-specific transition of allm′′ sublevels of a givenj′′,
thereby creating an excited-state ensemble with the relative
contribution of each excited statem′ sublevel weighted by the
square of the appropriate factor given above. These weights
clearly favor excitation of low|m|, which, given them
dependence of the densities exemplified in Figure 9, means that
the orientational distribution of the excited state ensemble will
be skewed toward theZ axis. This is at least qualitatively
consistent with expectations, given that the transition dipole is
coincident with the nuclear axis. The branch-resolved orienta-
tional distributions forj′′ ) 3 are shown in Figure 10; with the
mentioned selection rules, onlyj′ ) 2 or j′ ) 4, with ∆m ) 0
are reached. Because each molecule occupies a single rotational
eigenstate in the excited state, all distributions aretime-
independent. The total P branch (top right) and R branch (bottom
right) distributions are each less strongly oriented than cosine-
squared, while the individualm states have very complex
structures, as shown in the figure.

On the other hand, a sufficiently short pulsed excitation may
coherently excite both P and R transitions in each molecule,
creating an excited superposition state (rotational wave packet,

Ψjm(θ,æ) ) x(2j + 1)(j - |m|)!
4π(j + |m|)! Pj

|m|(cosθ)eimp (15)

Pj
|m|(cosθ) ) sin|m| θ ∑

n)0

ν

(-1)n ×

(2j - 2n)!

2jn!(j - n)!(j - 2n - |m|)!
cosj-2n-|m| θ (16)

Figure 9. Orientational probability distributions forj ) 3 rotational
eigenstates, and for the ensemble average of the sevenm sublevels. In
this and Figures 10 and 11, the distributions all have axial symmetry
about thez-axis (dashed line).
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Ψrot
wp(t)) of the form

where ′′ has been omitted from allj’s and m’s. The unequal
temporal phase factors in the two terms of this superposition
state lead to a time-dependent cross-term in the excited-state
probability distribution, |Ψrot

wp(t)|2, that is modulated at the
frequency 2B′(2j′′ +1) (i.e., ω ) (2j′′ + 1)ωno). The excited-
state distributions for eachm′′ ()m′), and their sum, are shown
at two different times in Figure 11, again forj′′ ) 3. The initial
total distribution (top right) isexactly equal to the classical
cosine-squared, and it recurs periodically as indicated. At odd-
multiples of half the recurrence period, the ensemble distribution
(bottom right) approaches the classical1/2 sin2 θ, even atj′′ )
3, and equals it exactly in the limit of highj.

Note, however, that, when the excited state is short-lived,
the absorption strength of rotational eigenstates is spectrally
broadened, allowing rotational wave packets to be createdeVen
with a cw laser. Since these wave packets evolve as in the
femtosecond excitation experiments, high levels of anisotropy
can be measured, reflecting the classical orientation averaged
over an excited state lifetime shorter than its rotation time. On
the basis of this fact, steady-state anisotropy values and product
angular distributions are commonly used to deduce how excited-
state lifetimes (or fragmentation lifetimes) compare with rotation
times.

VII. Some Remarks Regarding Applicability

We have attempted to convey in the preceding sections an
understanding for the fundamental relationship between orien-

tational dynamics, molecular structures, and time-resolved
anisotropy measurements in a wide range of environments. In
interpreting all such measurements, it is necessary to be aware
of the requirements for the applicability of the theoretical
treatments outlined here. The general expressions, eqs 1 and 2,
are valid for detection schemes that produce a signal proportional
to the one-photon absorption probabilities for both the pump
and probe process. If either of the transitions is in a regime of
saturation (nonlinear power dependence), this condition is clearly
not met and the anisotropic response to the polarized light will
be reduced.

Likewise, a detection scheme whereby the probe transition
transfers population to an otherwise unoccupied vibronic level,
and that population is monitored subsequently (in what can be
called pump/probe/detect schemes), consideration must be given
to possible influence on the monitored attribute of the high
degree of alignment created in the pump/probe steps. When the
detection process is either fluorescence detection or absorption
of a third light pulse, the proper choice of detection polarization
for pump and probe parallel or perpendicular to each other is
one that forms equal angles with an orthogonal axis system
defined by the pump and probe polarization directions. Any
other choice of detection polarization can modify the form of
the anisotropy.8,37

In the case of measurements by pump-probe ionization mass
spectrometry, caution is also warranted in applying the standard
theories described here, which assume transition dipoles that
have rigorously defined directions in the molecular frame, as
in the case of neutral-neutral transitions The additional degrees
of freedom of the ionization step (to ion+ free electron)
demands care in the treatment of the angular dependence of
alignment.38

Figure 10. Branch-resolved excited-state orientational probability
distributions for cw excitation of them sublevels ofj′′ ) 3, and the
corresponding total distributions.

xj2 - m2

4j2 - 1
Ψj-1m(θ,æ)e-i(hB′(j-1)j)t/p +

x (j + 1)2 - m2

(2j + 1)(2j + 3)
Ψj+1m(θ,æ)e-i(hB′(j+1)(j+2))t/p

Figure 11. Excited-state orientational probability distributions for
femtosecond excitation of them sublevels ofj′′ ) 3, and for the total
ensemble, shown at two times. (Top) The initial distribution, which
recurs periodically (t ) n/(2B′(2j′′ + 1)), n ) 0, 1, 2, ...). (Bottom)
Distribution at odd multiples of half the recurrence period (t ) (2n +
1)/(4B′(2j′′ + 1)), n ) 0, 1, 2, ...).
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Another underlying assumption of the treatments outlined here
is that the structures probed reorient under their respective
influences as rigid molecules with fixed transition dipoles. It is
clear that any process of internal structural or electronic
relaxation that results in internal reorientation of the transition
dipole may be detectable as a change in the anisotropy that is
unrelated to rotation of the molecule as a whole. Since electronic
excitation often leads to rapid relaxation or reorganization, such
anisotropy effects are relatively common and provide one avenue
to investigate the internal state of the excited molecule.

A final note on applicability concerns the experimental
detection of fluorescence by the up-conversion method, where
the sample fluorescence is time-gated by sum-frequency mixing
with an ultrashort gating light pulse in a nonlinear crystal. This
technique is equivalent in principle to polarized fluorescence
detection by time-correlated single-photon counting (TCSPC),
but with time resolution dependent only on the gating pulse
width. However, the difference in sensitivity between direct
fluorescence detection by photomultiplier and the up-conversion
method has the practical consequence that fluorescence in up-
conversion is typically collected over large solid angles by
means of parabolic mirrors. Such collection reduces polarization
selectivity. In this case, for example, even when excitation and
emission involve only two electronic states and hence occur
via the same transition dipole, the measured initial anisotropy
value may be systematically smaller than the theoretical value
of 0.4. The same problem will be encountered in TCSPC if the
solid angle for fluorescence collection is made large.

VIII. Conclusion

It has been our hope in this contribution to summarize, and
provide substantial insight into, some of the basic concepts that
have been important to the efforts of the Caltech research group
in the area of time-resolved molecular anisotropy. Study of
orientation in real time is powerful in elucidating the vectorial
dynamics in reactive and nonreactive systems and in obtaining
direct information on molecular structures. For achieving real
classical orientation of molecules (governed byµb‚εb) by creation
of classical-like wave packets, the femtosecond time resolution
is ideal, allowing for the study of orientation change in real
time and in the different phases discussed here: gases/molecular
beams, dense fluids, liquids, and solutions of confined mol-
ecules. On this time scale, coherent superposition of eigenstates
allows for the nonstationary-state evolution of orientation
because the time duration of the pulse (or generally the
coherence time of the source) is much shorter than the rotational
period for orientation; a superposition may also appear under
cw excitation, but only for a short-lived excited state and/or
when the dephasing time is sufficiently short. The vectorial
dynamics are manifestations of stereochemical properties and
their studies give a direct view of dynamical phenomena such
as coherent inertial motion and recurrences, collision dynamics,
microscopic friction/viscosity, and local rigidity.

IX. Appendix

In this appendix we collect those equations necessary for the
calculation of r(t) for a classical symmetric top molecule,
restricted only by the requirement that pump and probe dipoles
lie in a common plane containing the molecular figure axis.

To derive the form which the key functionµ̂1(0)‚µ̂2(t) takes,
we refer to Figure 12, in whichθ, æ, andψ are Euler angles
relating a molecule’s principal inertial axes (x, y, z) to space
fixed axes (X, Y, Z), chosen for each molecule so that theZ

axis lies alongjB. Whenz is the unique axis of the symmetric
top, the rotational motion of the top manifests itself as changes
in the anglesæ andψ at the constant angular velocitiesωn and
ωr, respectively. Thus, the time-dependent molecule-fixed axes
obey the following equations:

where the arbitrary value ofæ0 has been taken as 0, and the
angular frequencies areωn ) ωnoj andωr ) ωrok (see text).

Since the quantityµ̂1(0)‚µ̂2(t) can be expressed as

whereµia is the projection ofµ̂i on the molecule-fixeda-axis,
eqs A-1 and A-2 and the relationrµ̂1µ̂2(j,θ,ψ0,t) ) 0.4P2[µ̂1(0)‚
µ̂2(t)] provide a complete prescription for calculation of the state-
resolved probe signal anisotropies,rµ̂1µ̂2(j,θ,ψ0,t).

In general,µ̂1(0)‚µ̂2(t) depends onψ0, the initial rotational
phase angle, which has no influence on rotational energy. In a
statistical ensemble of free molecules,ψ0 will therefore be
uniformly distributed over 2π radians for each value ofj and
θ. Thus, therotational-energy-resolVedanisotropy is given by

For the case of accidentally symmetric molecules, the
transition dipoles may lie along directions not coincident with
a principal inertial axis. A large range of practical cases may
be covered by allowingµ̂1 and µ̂2 to lie anywhere in a plane
containing the figure axis, which may be taken as the inertial
xz plane without loss of generality. The expression for the

Figure 12. Euler angles specifying the orientation of the molecule-
fixed reference frame (x, y, z) relative to the lab-fixed frame (X, Y, Z).
For the derivation of eq A-1,Z is chosen to coincide with the angular
momentum of the molecule, andz with the molecular figure axis.

x̂(t) ) (cos(ψ0 + ωrt) cosωnt - cosθ sin(ψ0 +
ωrt) sin ωnt)X̂ + (cosθ sin(ψ0 + ωrt) cosωnt + cos(ψ0 +

ωrt) sin ωnt)Ŷ + sin θ sin(ψ0 + ωrt)Ẑ (A-1a)

ŷ(t) ) (-sin(ψ0 + ωrt) cosωnt - cosθ cos(ψ0 +
ωrt) sin ωnt)X̂ + (cosθ cos(ψ0 + ωrt) cosωnt - sin(ψ0 +

ωrt) sin ωnt)Ŷ + sin θ cos(ψ0 + ωrt)Ẑ (A-1b)

ẑ(t) ) (sin θ sin ωnt)X̂ - (sin θ cosωnt)Ŷ + cosθẐ (A-1c)

µ̂1(0)‚µ̂2(t) ) (µ1xx̂(0) + µ1yŷ(0) + µ1zẑ(0))‚(µ2xx̂(t) +
µ2yŷ(t) + µ2zẑ(t)) (A-2)

r µ̂1µ̂2
(j,θ,t) ) (1/2π)∫0

2π
r µ̂1µ̂2

(j,θ,ψ0,t) dψ0 (A-3)
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rotational-energy-resolved anisotropy can then be reduced to

To achieve quantitative agreement with the full quantum
treatment at long times, careful consideration must be given to
the correspondence between the dimensionlessj and k of the
classical derivation and the quantum numbersj andk associated
with the eigenvaluesj(j + 1)p2 of the angular momentum
squared andkp of the projection of the angular momentum on
the molecular figure axis, respectively. In addition to the
adjustments mentioned in the text forjωno and 2jωno, one must
add the replacement of each of the two trigonometric functions
of kωrot by an average of the same function of (k + 1/2)ωrot
and of (k - 1/2)ωrot.

The observedr(t) requires the ensemble average indicated
in eq 2. In the general case of an inhomogeneous population
composed of rotationally homogeneous subpopulations fully
defined by a set of rotational parameters{f}, the macroscopic
anisotropy is given explicitly by

wherePj({f}) is the population in state{f}. The functiona({f},t)
is the time-dependent amplitude of the isotropic probe signal
of the{f}-state, which is determined by the population dynamics
of that state and by the (possibly state-dependent) probe cross
sections and detection efficiencies. When the temporal evolution
of a({f},t) is common to all probed populations, i.e.,a({f},t) )
C({f})‚A(t) for all {f}, then the macroscopic anisotropy is strictly
determined (in measurements of sufficiently high temporal
resolution15) by the orientational dynamics of the transition
dipoles. Otherwise,r(t) may also reflect population dynamics
that simply change the weighting of differentr({f},t)’s in the
average in eq A-5.
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2 - µ1z
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2)‚{(3 cos2 θ - 1)2 + 12 sin2 θ cos2 θ cos(jωnot) +

3 sin4 θ cos(2jωnot)} + µ1x
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